Skinny strength: This carbon nanotube yarn, which has a diameter of 3.8 micrometers, twists when connected to an electrode and immersed in conductive liquid. Credit: Courtesy of UT Dallas |
Results: Researchers at the University of Texas at Dallas made nanotube yarn that twists in response to electricity, enabling it to act as a motor. For a given length, it twists 1,000 times more than other materials designed for use as tiny motors, such as shape-memory alloys that change shape in response to heat or another stimulus. The fastest of the nanotube motors spins at 600 revolutions per minute and can generate as much twisting force as a conventional motor. Researchers demonstrated this ability by using it to mix fluids with a paddle.
Why it matters: Making useful motors for very small applications has been difficult because decreasing the size of conventional motors greatly decreases the amount of twisting force they can exert relative to their weight. Even at this scale—just a fraction of a hair's width—the nanotube yarn can exert as much force relative to its weight as a large motor. It could be useful for moving fluids around in microfluidic devices.
Technology Review: Nanotube Motor
No comments:
Post a Comment