Artistic rendition of atoms in an optical lattice. Image Credit: Public Domain |
Quantum computing has been envisioned for decades, but is a difficult task to accomplish. Now, one research group is crowdsourcing human ingenuity to solve the problem—by turning it into a game.
Any computer system requires operations that result in a change in a physical system that leaves that system in a certain physical state. Two important requirements of a physical computing system are the ability to reproduce a physical state, and how long the created state lasts. These two quantities are known as fidelity and lifetime, respectively.
For a quantum computer, the degree of fidelity (how well the physical state can be reproduced) usually must be greater than 99.9%, depending on the physical system. The requirement is based on the ability to correct any errors that occur in the physical system so a build up of error does not occur. The requirement that executing an operation must occur faster than the lifetime of the quantum state, or what is typically called the quantum decoherence time, is difficult—if you try to execute an operation too quickly, you lose fidelity. Optimizing these two conditions has led scientists to rely on computer programs—algorithms—to try out many initial states and conditions. The algorithms are good, but there are an extremely large number of possibilities to try.
Physics Central: Quantum Computing, Human Processing, H.M. Doss
No comments:
Post a Comment