Brainy Quote of the Day

Tuesday, November 8, 2016

Lasers and Anti-Lasers...

Schematics above show light input (green) entering opposite ends of a single device. When the phase of light input 1 is faster than that of input 2 (left panel), the gain medium dominates, resulting in coherent amplification of the light, or a lasing mode. When the phase of light input 1 is slower than input 2 (right panel), the loss medium dominates, leading to coherent absorption of the input light beams, or an anti-lasing mode. Credit: Zi Jing Wong/UC Berkeley
Topics: Laser, Modern Physics, Optical Physics

Bringing opposing forces together in one place is as challenging as you would imagine it to be, but researchers in the field of optical science have done just that.

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have for the first time created a single device that acts as both a laser and an anti-laser, and they demonstrated these two opposite functions at a frequency within the telecommunications band.

Their findings, reported in a paper to be published Monday, Nov. 7, in the journal Nature Photonics, lay the groundwork for developing a new type of integrated device with the flexibility to operate as a laser, an amplifier, a modulator, and an absorber or detector.

"In a single optical cavity we achieved both coherent light amplification and absorption at the same frequency, a counterintuitive phenomenon because these two states fundamentally contradict each other," said study principal investigator Xiang Zhang, senior faculty scientist at Berkeley Lab's Materials Sciences Division. "This is important for high-speed modulation of light pulses in optical communication."
Lasers + anti-lasers: Marriage opens door to development of single device with exceptional range of optical capabilities

No comments:

Post a Comment