In a new study, Argonne scientists have discovered a way to confine the behavior of electrons by using extremely high magnetic fields. (Image by Argonne National Laboratory.) |
Olympic figure skaters and electrons have a lot in common. In figure skating competitions, the "free skate" segment gives the skater the flexibility to travel in whichever pattern he or she chooses around the rink. Similarly, in metals, electrons in outer orbitals can wander fairly freely.
However, when the magnetic field is increased dramatically, researchers have found that the motion of these electrons becomes much more tightly confined. Their behavior looks like figure skaters completing compulsory tight spins and jumps.
In a new study from the U.S. Department of Energy's (DOE's) Argonne National Laboratory, researchers used extremely high magnetic fields — equivalent to those found in the center of neutron stars — to alter electronic behavior. By observing the change in the behavior of these electrons, scientists may be able to gain an enriched understanding of material behavior.
"The rules of the game are changed when we apply a magnetic field of this intensity," said Argonne materials scientist Anand Bhattacharya, who led the research. "The nature of this new state that we see has been debated theoretically for over half a century, but experiments to measure its properties have been hard to come by."
Argonne National Laboratory:
Electrons "puddle" under high magnetic fields, study reveals, Jared Sagoff
No comments:
Post a Comment