Brainy Quote of the Day

Wednesday, July 19, 2017

INFO...

This image shows the NIST logo made from glowing nanowire LEDs. While the color of the nanowires in the image looks blue, they are actually emitting in the ultraviolet with a wavelength of approximately 380 nm. The other two images, from a scanning electron microscope, show the overall structure of the nanowires.
Topics: Atomic Force Microscopy, LEDs, Nanotechnology, Optical Physics

One of the persistent challenges in 21st century metrology is the need to measure ever-more-detailed properties of ever-smaller things, from microchip features to subcomponents of biological cells. That’s why, four years ago, a team of NIST scientists patented (link is external) the design for a nanoscale probe system that can simultaneously measure the shape, electrical characteristics, and optical response of sample regions a few tens of nanometers (nm, billionths of a meter) wide. 100 nm is about one-thousandth the width of a human hair.

Now the researchers from NIST’s Physical Measurement Laboratory are closing in on a working prototype. The newest version of the device, which has a probe tip that functions as an ultra-tiny LED “spotlight,” holds great promise for identifying cancer-prone tissue, testing materials for improved solar cells, and providing a new way to put circuits on microchips, among other uses.

The Integrated Near-Field Optoelectronic (INFO) system has the general configuration of an atomic force microscope (AFM), in which a probe tip on the end of a tiny cantilever beam passes a few nanometers over the surface of a sample, recording exact details of its morphology. But the metal-plated INFO probe also serves as a transmitter that projects microwaves into the sample as well as a receiving antenna that detects the altered microwaves coming back out. The nature of that alteration reveals electrical and chemical properties of the material.

Sub-microscopic LEDs Shed New Light on Advanced Materials, Ben Stein, NIST

No comments:

Post a Comment