Brainy Quote of the Day

Wednesday, August 29, 2018

Evidence of Things Unseen...

Schematic illustration of charge carriers confined within a TMD flake comprising different thicknesses. Charge carriers in the ground state (blue) can be excited upon resonant light excitation to a higher state (pink). Credit: ICFO/Fabien Vialla
Topics: Laser, Nanotechnology, Optical Physics, Quantum Mechanics, Semiconductor Technology

All deference to the Apostle Paul. It seemed an apropos title to the post.

Semiconducting heterostructures are key to the development of electronics and opto-electronics. Many applications in the infrared and terahertz frequency range exploit transitions, called intersubband transitions, between quantized states in semiconductor quantum wells. These intraband transitions exhibit very large oscillator strengths, close to unity. Their discovery in III-V semiconductor heterostructures depicted a huge impact within the condensed matter physics community and triggered the development of quantum well infrared photodetectors as well as quantum cascade lasers.

Quantum wells of the highest quality are typically fabricated by molecular beam epitaxy (sequential growth of crystalline layers), which is a well-established technique. However, it poses two major limitations: Lattice-matching is required, restricting the freedom in materials to choose from, and the thermal growth causes atomic diffusion and increases interface roughness.

2-D materials can overcome these limitations since they naturally form a quantum well with atomically sharp interfaces. They provide defect-free and atomically sharp interfaces, enabling the formation of ideal QWs, free of diffusive inhomogeneities. They do not require epitaxial growth on a matching substrate and can therefore be easily isolated and coupled to other electronic systems such as Si CMOS or optical systems such as cavities and waveguides.

Surprisingly enough, intersubband transitions in few-layer 2-D materials had never been studied before, neither experimentally nor theoretically. Thus, in a recent study published in Nature Nanotechnology, ICFO researchers Peter Schmidt, Fabien Vialla, Mathieu Massicotte, Klaas-Jan Tielrooij, Gabriele Navickaite, led by ICREA Prof at ICFO Frank Koppens, in collaboration with the Institut Lumière Matière—CNRS, Technical University of Denmark, Max Planck Institute for the Structure and Dynamics of Matter, CIC nanoGUNE, and the National Graphene Institute, report on the first theoretical calculations and first experimental observation of inter-sub-band transitions in quantum wells of few-layer semiconducting 2-D materials (TMDs).

Nano-imaging of intersubband transitions in few-layer 2-D materials, Phys dot org

More information: Peter Schmidt et al. Nano-imaging of intersubband transitions in van der Waals quantum wells, Nature Nanotechnology (2018). DOI: 10.1038/s41565-018-0233-9

No comments:

Post a Comment