Credit: Institute of High Performance Computing |
Case Western Reserve University researchers have won a $1.2 million grant to develop technology for mass-producing flexible electronic devices at a whole new level of small.
As they're devising new tools and techniques to make wires narrower than a particle of smoke, they're also creating ways to build them in flexible materials and package the electronics in waterproofing layers of durable plastics.
The team of engineers, who specialize in different fields, ultimately aims to build flexible electronics that bend with the realities of life: Health-monitoring sensors that can be worn on or under the skin and foldable electronic devices as thin as a sheet of plastic wrap. And, further down the road, implantable nerve-stimulating electrodes that enable patients to regain control from paralysis or master a prosthetic limb.
Thinking bigger, the team believes the technology could be used to crank out rolls of thin-film solar panels that stand up to decades in the elements. Current thin-film panels are plagued with short life spans due to seepage between layers.
As they're devising new tools and techniques to make wires narrower than a particle of smoke, they're also creating ways to build them in flexible materials and package the electronics in waterproofing layers of durable plastics.
The team of engineers, who specialize in different fields, ultimately aims to build flexible electronics that bend with the realities of life: Health-monitoring sensors that can be worn on or under the skin and foldable electronic devices as thin as a sheet of plastic wrap. And, further down the road, implantable nerve-stimulating electrodes that enable patients to regain control from paralysis or master a prosthetic limb.
Thinking bigger, the team believes the technology could be used to crank out rolls of thin-film solar panels that stand up to decades in the elements. Current thin-film panels are plagued with short life spans due to seepage between layers.
Phys.org: Effort to mass-produce flexible nanoscale electronics
No comments:
Post a Comment