Brainy Quote of the Day

Monday, September 12, 2016


FastCAP Systems' ultracapacitors (pictured) can withstand extreme temperatures and harsh environments, opening up new uses for the devices across a wide range of industries, including oil and gas, aerospace and defense, and electric vehicles. Credit: FastCAP Systems
Topics: Condensed Matter Physics, Materials Science, Solid State Physics

Devices called ultracapacitors have recently become attractive forms of energy storage: They recharge in seconds, have very long lifespans, work with close to 100 percent efficiency, and are much lighter and less volatile than batteries. But they suffer from low energy-storage capacity and other drawbacks, meaning they mostly serve as backup power sources for things like electric cars, renewable energy technologies, and consumer devices.

But MIT spinout FastCAP Systems is developing ultracapacitors, and ultracapacitor-based systems, that offer greater energy density and other advancements. This technology has opened up new uses for the devices across a wide range of industries, including some that operate in extreme environments.

Based on MIT research, FastCAP's ultracapacitors store up to 10 times the energy and achieve 10 times the power density of commercial counterparts. They're also the only commercial ultracapacitors capable of withstanding temperatures reaching as high as 300 degrees Celsius and as low as minus 110 C, allowing them to endure conditions found in drilling wells and outer space. Most recently, the company developed a AA-battery-sized ultracapacitor with the perks of its bigger models, so clients can put the devices in places where ultracapacitors couldn't fit before. New applications for ultracapacitors, Rob Matheson

No comments:

Post a Comment